Land Cover Classification using GA based Fuzzy Clustering Techniques for Remotely Sensed Data
نویسنده
چکیده
Remote Sensing Imagery is used by the Government and private agencies for the wide range of applications from military to farm development. Fuzzy c-means clustering is an effective algorithm, but the random selection in center points makes iterative process falling into the local optimal solution easily. In this Paper, a novel clustering method is developed using GA based clustering techniques. This technique enables the clustering to be performed by taking the initial centroid using mode function which allows the iterative algorithm to meet to a ―better‖ local minimum. Then the GA based improvement algorithm to get better cluster quality. The study area taken here is the Theni region, Tamil Nadu.
منابع مشابه
Texture Based Land Cover Classification Algorithm Using Gabor Wavelet and Anfis Classifier
Texture features play a predominant role in land cover classification of remotely sensed images. In this study, for extracting texture features from data intensive remotely sensed image, Gabor wavelet has been used. Gabor wavelet transform filters frequency components of an image through decomposition and produces useful features. For classification of fuzzy land cover patterns in the remotely ...
متن کاملSpatiotemporal analysis of remotely sensed Landsat time series data for monitoring 32 years of urbanization
The world is witnessing a dramatic shift of settlement pattern from rural to urban population, particularly in developing countries. The rapid Addis Ababa urbanization reflects this global phenomenon and the subsequent socio-economic and environmental impacts, are causing massive public uproar and political instability. The objective of this study was to use remotely sensed Landsat data to iden...
متن کاملUrban Land Use Classes with Fuzzy Membership and Classification Based on Integration of Remote Sensing and Gis
Urban land use classification from remotely sensed images has drawn great attention in the past decades. Most researchers derive land use data from remotely sensed images alone, but the results are not quite satisfying for detecting detailed land use classes in urban areas. Fuzzy urban land use classes proposed here consist of a number of fuzzy memberships that offer direct links to findings fr...
متن کاملMultispectral Data Classification Based on Spectral Indices and Fuzzy C-mean
Numerous applications make use of data on land use and land cover (LULC). Given their importance and use, land cover data is assumed to be readily available or trivially acquired for a given landscape. Unfortunately, this is often not the case. LULC data at hand are often out-of-date, inappropriate for a particular application [1], or contain other difficulties. Thematic mapping of remotely sen...
متن کاملA Novel Graph based Fuzzy Clustering Technique for Unsupervised Classification of Remote Sensing Images
This paper addresses the problem of unsupervised land-cover classification of multi-spectral remotely sensed images in the context of self-learning by exploring different graph based clustering techniques hierarchically. The only assumption used here is that the number of land-cover classes is known a priori. Object based image analysis paradigm which processes a given image at different levels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015